

Руслан Исрафилов

Ведущий инженер по разработке программных продуктов для анализа данных

Python: lingua franca of data science

Kaggle, Machine Learning & Data
Science Survey, 2017

Python

https://www.kaggle.com/sudalairajkumar/an-interactive-deep-
dive-into-survey-results/data

https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-
science-machine-learning-results.html

Python

KDnuggets Analytics, Data Science & Machine
Learning Software Pool, 2016-2018

Python is not about performance

Chapter 19: Performance Optimization
of Black—Scholes Pricing

Source Code: github.com/IntelPython/BlackScholes_bench

vs

Performance Issues in Data Analytics

C backendC backend

C backend

• No hardware-specific optimizations:

• No (or inefficient) vectorization

• Bad cache-memory utilization

• No (or inefficient) threading

• Greater part is still written in Python

• Global Interpreter Lock (GIL)

• Poorly optimized low-level math libraries

BLAS LAPACK

Learn More: software.intel.com/distribution-for-python

Intel® Distribution for Python*

mpi4py and more

Intel® DAAL Intel® MKL

Intel® C/C++ Compilers

Intel® MPIOptimized with

BUILT with

Drop in replacement for your existing Python. No code changes required.

conda create –c intel intelpython3_full

docker pull intelpython/intelpython3_full

optimized for Intel hardware try it now via Conda* or Docker* Multiple OSs

Close to native code vector math Performance with Intel Python* 2019
Compared to Stock Python packages on Intel® Xeon processors

More Benchmarks: software.intel.com/en-us/distribution-for-python/benchmarks

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

scalar + array

array + array

scalar * array

array * array

exp

erf

Performance Efficiency measured against native code with Intel® MKL
Problem Size = 2.5M, Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket)

Intel Distribution for Python* 2019 Stock CPython (numpy 1.14)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

29X

16X

28X

17X

80X

45X

See hardware & software configuration at the end

Accelerating Data Analytics

conda install -c intel scikit-learn pip install intel-scikit-learn

Intel® DAAL: software.intel.com/intel-daal

scikit-learn* frontend API

Optimized scikit-learn* package
Part of Intel Distribution for Python*

Intel® Data Analytics Acceleration Library (DAAL)

Intel® Math Kernel Library
(MKL)

Intel® Threading Building
Blocks (TBB)

Efficient memory layout

Data chunking for optimal
cache-memory access

Parallelization via Intel® TBB

Vectorization (SSE, AVX)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

K-Means [1M x 50]

Linear Regression [1M x 50]

Ridge Regression [1M x 50]

SVM [10K x 1K]

Performance Efficiency measured against native code with Intel® DAAL
Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket)

Intel Distribution for Python* 2019 Stock scikit-learn 0.19.1

More Benchmarks: https://software.intel.com/en-us/distribution-for-python/benchmarks

Close to native code scikit-learn Performance with Intel Python* 2019
Compared to Stock Python packages on Intel® Xeon processors

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

15X

90X

50X

80X

See hardware & software configuration at the end

Scaling Machine Learning in Cloud

Learn More: cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-
distribution-enhance-performance-and-scaling-of-Intel-Xeon-Scalable-processors-on-GCP.html

Scaling Machine Learning Beyond a Single Node

New API for scaling machine learning with Intel® DAAL & Intel® MPI

Intel® Data Analytics Acceleration Library (DAAL)

Intel® Math Kernel Library
(MKL)

Intel® Threading Building
Blocks (TBB)

Intel®
MPI

daal4py

conda install -c intel daal4py

Simple Python API similar
to scikit-learn*

Powered by Intel® DAAL

Scalable to multiple nodes

github.com/IntelPython/daal4py

import daal4py as d4p

initialize distributed execution environment
d4p.daalinit()

load data from csv file into numpy array
data = pd.read_csv("path_to_data.csv").values

compute initial centroids
centroids = d4p.kmeans_init(10, distributed=True).compute(data)

compute centroids and assignments
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

Example: Distributed K-Means with daal4py

mpirun -n 4 -genv DIST_CNC=MPI python kmeans.py

kmeans.py:

0

1

2

3

4

5

6

1 (24) 2 (48) 4 (96) 8 (192)

Number of Nodes (Number of Cores)

daal4py Speedup Factor (vs single node)
Intel® Xeon® Platinum 8180 CPU @ 2.50GHz, 24 cores per node

Distributed K-Means Scalability with Intel® DAAL and Intel® MPI
Measured on InfiniBand* cluster on Intel® Xeon processors

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

See hardware & software configuration at the end

~2X

3.2X

~5X

“We tested different version combinations and distributions of Python and NumPy for estimation
of Sobol indices using pSeven Core, since it’s one of the common problems our customers solve.
For older versions of Python, for example 2.6, the boost reached even 10x, but for the newer
ones it stayed around 3x to 5x”

Dmitry Vetrov, chief developer at DATADVANCE

Optimal Design with 5x
Performance Boost Case study

Standalone
Installer

Anaconda.org
Anaconda.org/intel channel

YUM/APT

Docker Hub

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

> conda config --add channels intel
> conda install intelpython3_full
> conda install intelpython3_core

docker pull intelpython/intelpython3_full

Access for yum/apt:
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-
python

2.7 & 3.6

Installing Intel® Distribution for Python

mpi4py

Hardware & Software Configuration
Close to native code vector math Performance with Intel Python* 2019 &
Close to native code scikit-learn Performance with Intel Python* 2019

python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python:
Intel Distribution for Python 2019 Gold: python 3.6.5 intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2
intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0
intel_np114py36_6, scikit-learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold
6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz

Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz, 24 cores per node, 786GB RAM per node; Infiniband 100 Gb/sec (4X EDR); Intel(R) MPI 2018 U3, Intel(R)
DAAL 2019 C++, Intel(R) C++ Compiler 2018

Distributed K-Means Scalability with Intel® DAAL and Intel® MPI

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads
utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily representative of other
benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S.
and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

